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Figure 1  simple method

Section I.  Introduction

Validation of calculations of PI in single locus hypervariable DNA probe systems require answers
to the following:

1. Do computed values of PI properly assess the genetic evidence?  (Section V)

2. Are systems independent? (Can PI's be multiplied together)?  (Section VII)

The following question, while not essential for computation of PI, is of interest and importance
for validation studies.

3. Are populations in Hardy-Weinberg equilibrium?  (Section VI)

We begin by discussing computation of paternity index (section II), data collection (section III)
and evaluation of experimental parameters (section IV).

Section II.  Computation of PI  

Consider a typical paternity case pattern wherein the mother and child are both heterozygous
and share a single band, and an alleged father, also heterozygous, appears by coelectrophoresis to share
the child's remaining band.

We will define the paternity index in this case to be PI0.  The paternity index in other situations,
such as the homozygosity of some of the parties, or a motherless case, can usually easily be formulated
in terms of PI0. 

PI0  =  1 / 2 � Pr{random match} (II.1)

and the problem of assigning a paternity index therefore boils down to the question of computing
Pr{random match} —  the chance that a random allele would match (by coelectrophoresis) the present one.

The simplest approach, and a common one, is to reason as follows.  Let
�
  =  coelectrophoresis resolution threshold;

y  =  molecular weight of the shared band Y;

f(x)  =  the probability distribution of the probe.

Then a random allele of weight x will co-migrate with Y provided
that

y � �  < x < y+ � ,

so define

which is illustrated by the shaded area, of width 2 � , in the figure
at right, and to a first approximation we have

Pr{random match}  =  S(y). (II.2)

The simple method is too simple.  It assumes that y is the
size of the allele.  In practice, y is only a measurement.  The nor-
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Figure 2  measurement error

Figure 3  refinement

mal curve at the left is suggestive of the uncertainty of the measurement.  If we make the assumption that
y is normally distributed with

�  = standard deviation, and

N(t, � ) = normal distribution

then as suggested by Figure 2 we consider a weighted average of
the shaded areas as the center of the area is wiggled back and
forth, weighted according to the normal curve.  Thus we are led
to the formula

Pr{random match}  = (II.3)

However, the reasoning is still not complete.  The normal
distribution represents the probability that an allele whose true
size is y would be measured somewhere else, whereas the exper-
imental situation is the converse:  y is the measured position, it is

the true size that may be elsewhere.

Refer to the figure at the right.  An allele of size y is
equally likely to be mis-measured as L or as R.  But a
measurement at Y is much more likely to be a mis-measurement
of R than of L, simply because, and precisely in the proportion
that, R is the more common allele.  By an application of Bayes'
Theorem, then, the correct weighting function, illustrated here, is
proportional to N(t � x, � )f(x), and so we have

Pr{random match}  = (II.4)

where k is the normalizing factor

The error in using (II.3) instead of (II.4) is always in the direction of calculating too large an index
of paternity.  The error is particularly significant where large PI's are concerned, or where the
measurement is in a sparse region of f(x) but quite near a dense region.

Section III.  Collection of Data

In this chapter we discuss several issues pertaining to reliability of molecular weight
determination.

A.  Reading Membranes

Our membranes include a ladder of standards every tenth lane or so.  This amounts to three or
four ladders.   

We use a digitizing tablet to enter data from DNA sizing membranes into a computer.  This
method is low-tech, but simple and reliable.  The membrane is taped to the surface of the tablet, the
appropriate computer program is invoked, and then the operator digitizes the DNA bands one at a time
using a hand-held object called a "cursor" which contains cross-hairs and buttons.  

Intraassay variation —  that is, the difference between two different digitizations of the same
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Nominal Interpolation method
size hyperbola spline

3.057 kb � 0.024 �  � 0.011
4.076 � 0.042 � 0.046
5.095 � 0.023 � 0.067 �

6.114 � 0.037 � 0.023
7.113 � 0.052 � 0.054
8.152 � 0.064 � � 0.033
9.171 � 0.020 � 0.028

10.190 � 0.007 � 0.169 ���

11.209 � 0.018 � 0.242 ���

12.228 � 0.043 +0.167 ���

Table I  Comparison of errors ( � ) in interpolation
methods

membrane —  averages 17 (±14) base pairs at 6.7Kb, and 9 (±7) at 3.3Kb.  These differences amount to
0.29% �MW and 0.26% �MW.  

As a first step to minimizing errors, a schematic image of the membrane is built on the computer
display as the membrane is being digitized.  This was the first of several reasons that led us to include
color graphics capability as part of the computer requirements.  The screen image shows colored lanes
corresponding to the lanes of the membrane.  As each point is digitized by virtue of the operator pressing
a cursor button, a blip appears at a corresponding position on the screen.  The lanes containing standards
—  every tenth lane or so —  are in a brightly contrasting color.  These lanes usually have 10 bands, as
opposed to the one to four (in case of co-electrophoresis) bands in data lanes.  A glance at the screen will
quickly tell whether all bands are present and in the correct relative positions. 

Digitization is very quick — 2-3 minutes for a 30 lane membrane.

B.  Determining DNA Fragment Lengths

Converting digitized positions to molecular weight is a matter of interpolation.  Since fragment
mobility will always vary from membrane to membrane, the molecular weight of the DNA fragments in
each data band can only be assigned by comparing the position of the band to the positions of standard
markers (bands of known molecular weight) on the same membrane.

1.  Interpolation in the migration direction

Imagine for the moment that there is no variation from lane to lane.  Then interpolation consists
of 

a.  Choosing a curve L(m), where m is migration distance, that gives the molecular weight L of
the standard bands when applied to their corresponding m.

b.  Evaluating L(m) for the migration distances m of the data.

In Elder & Southern [Measurement of
DNA Length by Gel Electrophoresis, Analytical
Biochem 128:227-231, 1983] a number of such
curves are considered.  We experimented with
them, used the method of cubic splines for a
while, then reevaluated and now use a
hyperbola.

The method of cubic splines is a
standard technique in curve fitting but has
nothing particular to do with DNA.  It is an
adequate method of interpolating, as judged by
demoting one of the standard markers to a data
band, and seeing if we can correctly guess it's
length by using the cubic through its neighbors.
And it may be seen as a virtue that the spline
passes exactly through each of the standard markers, and so "predicts" their lengths exactly.

On the other hand, when on occasion it's necessary to extrapolate —  because a data band is too
close to the edge of the membrane to have 2 standards on either side — the cubic method may fail
miserably, even ludicrously.  It these circumstances sometimes it gives molecular weights that are
negative, or 20Kb too high.

The hyperbola method, being a single simple formula with only three parameters L0, m0, and c:

L(m) = L0 + c / (m �  m0)
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doesn't even necessarily pass through the standard markers.  However:
�

According to Elder & Southern, such a formula is suggested by a simple model of
migration.  And since it somewhat mirrors reality, it is less fragile.  When extrapolation
is necessary the results are still poor, but they're not awful.

�
Passing a curve exactly through all the standard markers may be a poor idea.  If some
of them are out of the way, so you have to meander to get to them, perhaps they were
digitized, or they migrated, inaccurately.  To put it another way, rather than judging a
data band by comparing it only with nearby standards, farther away standards should
have some influence also, though only a modest one.

�
It is quicker and more convenient to compute.

Lately we have been running a standard ladder from BRL as an additional control.  Interpreting
our readings of this ladder under both methods of interpolation (Table I) gives an additional evaluation
of method.

2.  Interpolation in the transverse direction

Up to now we've pretended that the membrane is one-dimensional.  In fact, rates of migration
might differ from lane to lane, or the membrane might be warped (e.g. through handling).  Thus, if lanes
1 and 10 are standard lanes, migration distances in lane 5 should probably be interpreted by applying
interpolation in the "lane" dimension as well.  Our algorithm is to fit a polynomial through all the
standard lanes, so that if, say, 30 is also a standard lane, it too would have some influence, albeit a small
one, on the interpretation of lane 5.  This method is recommended by the following arguments:

a.  Suppose the following sort of deformation occurs:  Lie the gel flat on the table.
Suppose lane 30 is slid upwards while lanes 1 and 20 are held in position.  To the extent that the
gel is springy, lane 5 will bow downward; the lower and upper edges of the gel bend into a
rough parabola.

b.  Suppose the gel is not springy.  Hold lanes 20 and 30 fast, and deform by sliding lane
1 up.  Perhaps the soft gel will absorb all the deformation at the few leftmost lanes, lane 5 not
moving at all.  Then in interpreting lane 5 it would be a mistake to take too much account of lane
1, while ignoring lane 30 which is in fact more representative. 

c.  By visual examination some membranes appear bowed — judging both from the
relative positions of the standard lanes with respect to one another, and from the way the bands
slant to make a happy or sad face, it appears that the distortion is smoothly distributed across
the width of the membrane.

However, experimental data is not yet available to test these ideas. 

Section IV.  Evaluation of Parameters

A fundamental problem for computation of PI in single locus hypervariable DNA probe systems
is selection of experimental parameters.  For coelectrophoresis experiments, the key parameter is delta
(

�
), the discrimination power of the experimental technique.  Of secondary importance is the standard

deviation of measurement variation, which is of primary importance for calculation of PI based only on
allele measurements [Gjertson, et al Am J. Hum. Genet. 43 (1988) 860-869].  There are two separate
standard deviations:  Interassay (between run), appropriate for accounting for measurement error in
searching the data base for computation of matching frequency, and intraassay (within run), appropriate
for assessing the significance of measured paternal and tested man alleles.  Repeat experiments will yield
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Mean
allele relative 

size (kb) range �  (%)

2.789 .104 0.86
3.384 .116 0.89
5.106 .11 0.72
8.554 .152 0.58

Table II  Relative error of measurement, based on 21
runs of a control subject

Figure 4  Interassay variation among 21 runs of a control
subject.  Raw data, smoothed data, and a normal curve for
comparison are pictured.

these parameters.

A.  Determination of �

�  is defined as the interassay standard
error of measurement.  It is not as important as

�
 if paternity index is evaluated by the co-

electrophoresis method (page 1).  Still, it plays
a role in the formula, and is pivotal if one uses
Gjertson's method.

We were interested in answering two
questions:

1.  How much is � ?  Table II gives our data on
our genomic control.  These values of �  are higher than
observed with the BRL ladder (typically 0.3 - 0.5% � MW)
and with repeat runs on case material (typically
0.6% � MW).  Part of the discrepancy may be due to our
standard placement of the genomic control (lane #30),
where it may be subject to edge effects. 

2.   Are errors really normally distributed? 
shows the various results of running a control subject
many times.  The raw data is indicated by the dotted
lines.  The bold dashed line is a computer-smoothed
version of the same data, and it does seem similar to the

normal curve included for comparison.
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Figure 6  Dots indicate homozygotes and near homozygotes.  The combined allele distribution for
all populations and probes is graphed as background.  The sideways strip on the right indicates
dot density as a function of vertical scale.

B.  Determination of �
1.  Lower limits for �  can be obtained in two ways:

a. �  cannot be less than the width of a band.  As the bands in a "near heterozygote" move closer
together, they will begin to merge when the difference in their size (measured center-to-center)
is equal to the band width.  One cannot expect reliably to distinguish two such close bands.  One
cannot measure width of bands with great precision, but measurement of a few dozen randomly
selected band widths yields a good approximation for the lower limit of � , which, for our
experimental conditions and pS194 and pL336, is about 1% � MW.

b. �  cannot be smaller than the distance between the measured bands of the closest heterozygote.
Figure 6 is a scattergram showing the relative distance between band measurements for "near
heterozygotes" (plotted as a function of the smaller allele), and distribution of homozygotes.

From the computer files, there are few heterozygous individuals with allelic difference < 1% � MW,
and many < 2% � MW.  These observations suggest that �  is between 1% � MW and 2% � MW.

Note that, in practice, we do not distinguish heterozygotes with bands closer than 1% � MW,
although repeat runs with greater resolution occasionally will resolve a "fat band" as heterozygous (see
above).  Thus, the limiting factor in resolution of heterozygotes appears to be delta, rather than
nonexistence of heterozygotes with alleles closer than 1% � MW.  Again, the lower limit of �  for our
experimental conditions is about 1% � MW.

2.  Upper limits for �  may be obtained in two ways

In this section we mention two methods for estimating �  from experimental data by assuming
Hardy-Weinberg equilibrium.  These methods are useful not because Hardy-Weinberg is a plausible
assumption (which it may or may not be —  see Section VI), but for a slightly better reason.  Namely, we
feel comfortable in assuming that any deviation from equilibrium will be in the direction of excess
homozygosity.  In that case, the true value of �  will be if anything lower than estimated by these methods.

a.  Comparing observed with calculated heterozygosity (h) affords a method for estimating � .  
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Probe Race heterozygosity �

pS194
Caucasian 82.7% 1.893%
Black 84.8 2.366
Black+Caucasian 83.5 2.297
Hispanic 84.9 1.423

pL336
Caucasian 87.7 1.88
Black 87.6 2.46
Black+Caucasian 87.6 1.82
Hispanic 91.3 1.366

Table III  Values of �  that explain the observed heterozygosity,
by population

The calculation is to choose pairs of alleles at random from the data base, calculating the
frequency with which pairs of alleles differ by more than � , and choosing �  so that calculated
heterozygosity agrees with observed heterozygosity.  This calculation assumes Hardy-Weinberg
equilibrium. When applied to our Hispanic data bases:

probe
pS194 � (% � MW) 1.0% 1.2% 1.4% 1.6% 1.8% 2.0%

h(calc) 0.887 0.868 0.851 0.835 0.82 0.805

observed h = 539/635 = .848

pL336 � (% � MW) 1.0% 1.2% 1.4% 1.6% 1.8% 2.0%
h(calc)   0.934   0.922 0.911 0.901 0.891 0.882

observed h = 535/586 = .913           

Values of �  determined by this method are summarized in .  Calculated heterozygosity matches
observed heterozogosity when �  �
1 .4% � MW for  ea ch  probe ,
comfortably larger than the
minimum estimates (1.0% � MW)
obtained above.  When this
experiment was repeated with
smaller Caucasian and Black data
bases, anomalous results were
obtained —  observed heterozygosity
a g r e e d  w i t h  c a l c u l a t e d
heterozygosity for Caucasians when�

 �  1.9% � MW, and for Blacks when 
�

�  2.4% � MW.  Observed band widths
and close heterozygotes were not
different among races (data not
shown), so the source of the
anomalous results suggested either
limitations of equation V.B.2,
sampling variation, or deviation from

Hardy-Weinberg equilibrium.  Most of the data used for the above were obtained from blots which are
limited to deletion of alleles less than 12.4 kb (pS194) and 8.8 kb (pL336).  Less than 1% of alleles for
Caucasians and Blacks are expected to be missed by this technique [D. Dykes, personal communication],
which is insufficient to account for the observed differences.

b.  Comparing observed with calculated rates of exclusion ( �A) gives another method of estimating � .

Frequently, mean exclusion probability is determined from case material by shifting tested men
by one or more positions, thus matching mother-child pairs with non-fathers.  Men for whom
both alleles differ from the paternal allele(s) by more than �  are considered to be excluded.  This
method yields a calculated, rather than experimental, exclusion probability, as it depends on the
value chosen for � .  Such methods have yielded illogical results — calculated �A larger than
observed h.  Such results are equivalent to a claim that ones chance to win the lottery is greater
with a single ticket than with two.  If the limitations for equation V.B.2 and Hardy-Weinberg
equilibrium are satisfied, the inevitable conclusion for such anomalous results is that the chosen
value for �  is too small.  If such a �  is used for calculations of PI, the resulting PI's will be too
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Figure 7  �  as function of MW assuming
  �������  constant band size
  ---- band grows like � m
  � � � �  band grows linearly with m

large.  However, if experimental �A is available, agreement with calculated �A provides validation
of the chosen value of � .  In the absence of several hundred exclusion cases, �A may be calculated
from equation V.B.2, and also calculated from case material by displacing tested men from
mother child pairs, and choosing �  so that the two estimates of �A are in agreement.  This method
is subject to the limitations (above) for equation V.B.2.

3.  A model for �
How does �  vary with varying molecular weight? 

Particularly in view of the difficulty of determining �  through measurement, it seems worthwhile
to consider what relationship should be expected theoretically.  In quoting �  as a percent of molecular
weight we are implicitly assuming that the same percentage applies at various weights.  Is this a
reasonable assumption?

We assume that discrimination ability is limited by band thickness.  Let

m  =  migration distance (cm),

L  =  molecular weight (kb),�
  =  thickness of a band (cm),

d  =  discrimination threshold (kb), and�
  =  100 	 d/L = % discrimination threshold.

Then if we know how L and 
�
 behave as functions of m, it should be possible to compute how 

�
 behaves.

We know that L and m are very nearly related by a hyperbolic relation of the form

L(m) 
  L0  =  c / (m 
  m0).

L0 = 
 0.88 kb, m0 = 
 0.965 cm, and c = 64 kb-cm are typical values for the parameters, which depend on
running conditions.  We have found that such an equation gives an excellent fit for molecular weights
from 3-12kb.  As for the behavior of 

�
 with respect to m, many assumptions are possible but we'll

consider only the possibilities

 
�
(m)  =  

�
0 + k 	m �

for � 0=0.05cm and various choices of the parameter 
 .  
 =0 is the naive assumption that �  is a constant;
 =1 represents the pessimistic assumption that
a band grows twice as thick if it migrates twice
as far; and 
 =½ corresponds to the notion that
band diffusion is some sort of random walk
process.

Then

� �
(L)  =  (100/cL)(L � L0)2( � 0+k �m �

),

(Appendix A) and k can be determined by
assuming 

�
=1.4% �MW at L=7 kb.  The result is

Figure 7.  Since at least the dotted line,
corresponding to 
 =1, is close to constant, this
analysis lends plausibility to the practice of
taking 

�
 to be a constant percentage amount.



Validation studies -9- December 3, 1992

�A calculated by
 h (V.B.1) (V.B.2)

.80 .640 .599

.85 .723 .695

.90 .810 .797

.95 .903 .898
Table IV  �A predictions

Section V.  Validation of PI

Suppose that PI's have been computed for a series of paternity cases.  In this section we discuss
methods for testing whether the collection of values, as a whole, are credible.

Some tests are given that depend on checking some formulas relating exclusion rates, expected
heterozygosity rates, and simple functions of PI.  

We begin with some identities relating paternity index to probability of exclusion (subsection
V.A).  Then we discuss means to estimate probability of exclusion (subsection V.B).  We use these results
(subsection V.C) to compare the results of calculating average paternity index in different ways,

which provides a check on our parameters and our methods.

Finally (subsection V.D) we present a forensic application similar in spirit to V.B.

A.  Average Values of PI — relationships between mean exclusion probability ( �A) and paternity index
(PI)

The overbar (� ) notation indicates an average value taken over a large number of cases.

For fathers: �1 �/ �P�I  =  1 �

�A (V.A.1)

For non-excluded non-fathers: �P�I  =  1/(1 �

�A) (V.A.2)
�W (50% prior probability, non-exclusion) =  1/(2 �

�A) (V.A.3)

The above relationships are independent of assumptions of Hardy-Weinberg equilibrium.
Equations (V.A.1) and (V.A.2) may be found in [Nijenhuis, LE. pp. 103-114,  Inclusion Probabilities in
Parentage Testing.  Ed R. Walker AABB 1983 Arlington, VA].  Equation (V.A.3) may be found in [Morris,
JW. p 267-276, of the same volume]. 

In order to make use of equations (V.A.1), (V.A.2), and (V.A.3), we shall require values for the
mean exclusion probability, �A.  It can be determined experimentally, by coelectrophoresis of specimens
from child and non-father.  This, obviously, is the optimal method.  However, estimation of mean
exclusion probability by this method requires several hundred cases of non-paternity.  We are aware of
only one such published study (see Table XII, Appendix B).  In this case agreement of calculated �A from
h (equation V.B.2 below) with experimental findings is excellent.

B.  The Heterozygosity-Exclusion Analogy — relationship between heterozygosity (h) and mean
exclusion probability ( �A) 

The determination that an individual is homozygous or heterozygous at a given locus may be
regarded as a coelectrophoresis experiment.  The maternal and paternal alleles are coelectrophoresed in
the same lane and a visual determination is made as to whether or not two alleles can be distinguished.
For a given population, heterozygosity (h) may be regarded as the mean exclusion probability for the
hypothesis that maternal and paternal alleles are
identical.  This biostatistic might be useful if one is
investigating the possibility that the phenotypes of a
given individual arose from incest.

It is standard practice to determine
exclusion/non-exclusion by coelectrophoresis in the
same lane of specimens from child and tested man.  If
the alleles of the tested man are clearly distinguished
from the paternal allele(s), an exclusion is recorded.
This procedure is highly analogous to determination of
homozygosity/heterozygosity - the difference is that for
heterozygosity/homozygosity the maternal allele has
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one chance to match the paternal allele, while for exclusion/non-exclusion, there are two chances for a
match between the tested man and paternal allele.  It is perhaps not surprising that the mean exclusion
probability ( �A) can be approximated by a simple function of heterozygosity (h):

�A  �   h2. (V.B.1)

A more accurate approximation is:
�A  �   h2(1 � 2hH2) (V.B.2)

where

H  =  homozygosity

=  1 � h.

Derivations of equations (V.B.1) and (V.B.2) are given in Appendix B.  Predicted values for �A as
a function of h are shown in Table IV.

Limitations of equations (V.B.1) & (V.B.2)

a. It is essential that criteria for heterozygosity/homozygosity be identical to those used for
exclusion/non-exclusion.  In our laboratory heterozygosity depends on identifying two discrete
bands in the phenotype of an individual - the same criteria (alleles of the tested man must be
discretely different from the paternal allele(s)) is used for exclusion.  Thus, "fat bands" are
recorded as homozygous in the data base, and as non-exclusions in case material (for purposes
of analysis) although we have found in both experimental situations that retesting under
conditions of increased electrophoretic resolution will sometimes permit splitting of "fat bands"
into two discrete alleles.

b. Experimental conditions for heterozygosity/homozygosity and exclusion/non-exclusion must
be identical.  In practice, this is easy to achieve, as data bases are often constructed from
unrelated adults in disputed paternity cases, and thus heterozygosity/homozygosity is
determined in the same gel (often in adjacent lanes) as exclusion/non-exclusion.

c. Equations (V.B.1) and (V.B.2) do not require Hardy-Weinberg equilibrium.  However, if the
population making up the data base for computation of homozygosity/heterozygosity is
heterogeneous, then equations (V.B.1) and (V.B.2) assume that the offspring for whom �A is
computed or observed is heterogeneous in the same way.  In practice, one must observe the same
homozygosity rate for offspring in paternity matters as for the data base.

d. Equations (V.B.1) and (V.B.2) assume that silent alleles ("blanks") occur with negligible
frequency.  While this appears to be the case with most single locus hypervariable DNA probe
systems, failure to identify alleles because of experimental conditions will cause significant
distortion.  If 2% of bands are missed because they are too large or too small for the conditions
of electrophoresis or blotting, observed heterozygosity will be low by about four percentage
points.

C.  Some Consistency Checks

However PI's are computed, relationships (V.A.1), (V.A.2), and (V.A.3) must hold.  Optimally,
a large series of case material should be used, so that �A and PI distribution may be determined
experimentally.  Our case material is limited, so we have made use of simulation methods.  

A representative collection of PI's for fathers were calculated from the data bases in the following
fashion.  Each observed allele was considered in turn to be a paternal allele, and PI0 was computed, taking

�
 = 1.4% � MW and �  = 0.6% � MW, as:
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PI0  = 1 / 2 � Pr{random match} (II.1)

This equation, introduced on page 1, assumes that a single paternal allele is identified and the
non-excluded alleged father is heterozygous.  Since we are assuming that the alleged father is the
biological father, PI0 must be corrected for possible homozygosity of the father and for the possibility of
two possible paternal alleles.  We do this by the following approximation, whose derivation is given in
Appendix C:

PIf  
�   PI0 �  [1 + h (1-h) (2-h)/2] (V.C.1)

Apply equation V.A.1 to the collection of simulated PIf's, and we must have
�1 �/ �P�If  =  1 - �A. (V.C.2)

Equation V.C.2 can be used to predict �A, given the allele distribution and assuming a value for 
�
.

The reciprocal of the mean reciprocal PI for fathers is in some sense a typical PI for fathers, and so we
define

"typical PI for fathers"  = P̂If  =  1 / �1 �/ �P�If.

Among other things, P̂If can be regarded as a measure of the power of a test.  In this respect it is worth
considering other statistics that one might consider in this role.

(a)  An arithmetic mean, �P�I or �P�If, is not a good measure of typical performance because it is too
much influenced by occasional large values.

(b)  The defect of averaging PI's can be avoided by averaging in the domain of probabilities rather
than likelihood ratios.  That is, for each PI compute a probability W, find �W, and then backtrack to the
corresponding PI.  This method has the theoretical blemish of depending on a choice of prior probability,
but experiment shows that the choice of prior doesn't matter very much.

(c)  The geometric mean, 

(PI1 � PI2 � ... � PIN)1/N

is also a sensible statistic in that likelihood ratios are meant to be multiplied.  It also has the appeal of
being the only candidate that naturally combines systems:  The geometric mean PI for a combination of
independent systems is the product of the geometric means per system.

(d)  The median PI.

All methods except (a) give about the same number.

From equation V.A.2, a corresponding statistic for non-fathers is
�P�I (non-paternity, non-exclusion) = 1/(1 �

�A)

This will be called "mean PI for random non-excluded men" = �P�Ir.

Note that

P̂If  =  �P�Ir.

Since �A �  h2 (equation V.B.1),
�P�Ir  

�   1/(1-h2)

=  1/(1+h)(1-h).

Since 1+h �  2 and 1-h = H,

P̂If  =  �P�Ir  
�   1/2H. (V.C.3)
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Calculated using �  (=1.4% � MW) Calc from obs h
calc �1�/ �P�If calc �A  obs calc �A
 h (V.C.1) (V.C.2) P̂If   h (V.B.2) �P�Ir

pS194
Hispanic (N=638) .851 .276 .725 3.63 .848 .691 3.24
Caucasian (N=472) .858 .262 .738 3.81 .822 .641 2.79
Black (N=304) .898 .192 .808 5.21 .842 .679 3.16

pL336
Hispanic (N=586) .911 .167 .833 6.00 .913 .822 5.62
Caucasian (N=221) .903 .180 .820 5.56 .873 .741 3.86
Black (N=226) .925 .143 .857 7.00 .876 .747 3.95

Table V  Validation through comparing methods of calculation

 Calculated from case material Calc from observed h
�1�/ �P�If  �A median calc �A
(V.C.1) (V.C.2)  P̂If  PI (V.B.2)

PS194
Hispanic (N=26) .339 .661 2.95 2.98 .691
Caucasian (N=19) .309 .691 3.24 3.16 .641

pL336
Hispanic (N=26) .190 .810 5.26 6.24 .822
Caucasian (N=19) .156 .844 6.41 9.32 .741

Table VI  Validation by comparing observed and calculated values

This equation yields a "quick and dirty" estimate of typical PI for fathers from observed or
calculated heterozygosity.  The similarity of equations V.C.3 and II.1 should be noted.

Table V summarizes results obtained with our data bases.

For both probes, the Hispanic population shows good agreement between estimates of �A calculated from
P̂If (equation V.C.2) and calculated from observed heterozygosity (equation V.B.2).

The agreement is less good for Caucasian and Black populations because observed
heterozygosity is significantly less than calculated for  �  = 1.4% � MW.  Our limited case material yields
the following results ("fathers" are men non-excluded in conventional and DNA probe systems) for �  =
1.4% � MW,  �  = 0.6% � MW:

Our analysis yields the conclusion that for our experimental conditions typical and median PI's
should be about 3 for pS194, and about 4-6 for pL336.  These values are substantially less than those
claimed for single locus probes of equivalent polymorphism [Balazs, et al Am. J. Hum Genet. 44 (1989)
182-190].   See Endean, D., these Proceedings, for a further evaluation of these probes.

Additional strategies for validation of PI
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2. For case material consisting of roughly equal numbers of fathers and non-fathers, equation
(V.A.3) can be used.  For cases in which non-exclusion is observed for a given probe, W (50%
prior) for that system can be computed and averaged, yielding estimates for mean exclusion
probability for comparison to observed or calculated �A.

3. For unselected case material tested in an extensive test battery, realistic prior probability can be
closely estimated from exclusion rate.  For each probe system, W (realistic prior) can be
calculated for each case.  Sum of W's (including exclusion cases) equal the expected number of
fathers (realistic prior probability �  sample size).

4. For very large collections of unselected case material with extensive testing, PI's in each probe
system may be grouped by magnitude.  By definition of PI, the frequency of PI's among fathers
with a < PI < b should be more than a but less than b times greater than the frequency among
non-fathers.  See Morris, J.W. [Transfusion 29 (1989) p281] for application to conventional
systems.

Demonstration of Additional Strategy V.C.2

Suppose we have 100 cases and know (through thorough testing with conventional methods) that
70 of them represent fathers.  

Test the 100 cases with the new test.  Compute the paternity indices using the method that we
are hoping to validate.  Convert each paternity index to W, probability of paternity, using the laboratory's
experienced prior probability of 70%.

Thus for example a man with paternity index of 2 has a posterior probability of paternity of

which means that 100 such men supposedly include 82 fathers, or that this one man is (probabilistically)
0.82 fathers.

Therefore, if we add up all the W's computed this way, we will be computing the total expected
number of fathers.  If that total is not close to 70, the paternity indices must be wrong.

However, this method is only useful when the test is not too powerful, as in the example.
Suppose to the contrary that the new test shows the following results:

� 29 of the 30 non-fathers are also excluded by the new test.
� The paternity index under the new test for the other non-father and for the 70 fathers is

computed to be 100.

Then we get

whereas if another proposed procedure gives an index of only 10 instead of 100, we have
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and the difference is probably not significant with only 100 cases.

D.  A Forensic Application — estimation of mean probability of phenotype match ( �R) from homozygosity
(h)

If phenotype matching is determined by coelectrophoresis, the mean probability of matching is:

�R  �   (1 � h)2(1+h)
�   2H2.

Derivation of these approximations, which assume Hardy-Weinberg equilibrium, can be found
in Appendix D.  If coelectrophoresis is not performed, it seems to us that the method of Gjertson is easily
adaptable to phenotype matching, and can be modified, as suggested by Gjertson, to account for "non-
random" measurement error.  [see Evett, I, these proceedings].
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      Probe     
pS194 pL336 both

Caucasian 468 219 191
Hispanic 635 586 517
Black 297 225 209

Table VII  numbers of people typed in
each DNA probe

Figure 8  Distribution of pS194 Black alleles

Section VI.  Hardy-Weinberg Equilibrium

A.  Quest for a Test

A population is defined to be in Hardy-Weinberg equilibrium with respect to a given
polymorphic genetic marker provided that the various alleles assort randomly.  The condition of random
assortment is commonly stated as a formula:

If two alleles A and B occur with frequencies a and b in the population,
then the phenotype AA should occur with frequency a2 and the
phenotype AB should occur with frequency 2ab.

That the population should be in Hardy-Weinberg equilibrium with respect to the tested systems
is an invariably stated assumption for the evaluation of blood-stain evidence in paternity and in forensics.
Therefore attention is beginning to be focused on the question of equilibrium with respect to DNA probes.

For example, Lander [pp 30-31, Expert's Report in People v. Castro, 1989] expressed doubt that
populations and probes used by Lifecodes in the Castro case are in Hardy-Weinberg equilibrium, basing
his conclusion partly on Wahlund's test applied to Lifecodes reported data, and partly, concerning rare
alleles, by analogy with conditions such as Tay-Sachs.  (Populations are not expected to by in Hardy-
Weinberg equilibrium with respect to rare alleles.)

We shall return to consideration of Wahlund's test.

Up to this point, little data seems to have
presented to justify the assumption of Hardy-Weinberg
equilibrium for any DNA probes.   Having on our

computers a considerable number of allele
measurements we decided to make a quick
test of equilibrium.  It turned out to be harder
than expected.

The obvious problem is that unlike in
traditional systems, the alleles are not classified, but only measured.  As everyone well knows, the
measurements are not precise.  The imprecision, with a standard deviation on the order of 0.6% � MW, is
the source of considerable consternation for this kind of analysis.  For it may well be — in fact probably
is —  the case that the underlying data consists of discrete alleles.  But the alleles do not remain discrete
when we measure them.  Assuming that many of the peaks and shoulders in Figure 8 represent alleles,
it is clear that measurements of nearby alleles overlap to a considerable extent.  How, then, can we deter-
mine allele frequencies?  How can we test for Hardy-Weinberg equilibrium?  Can the equations of
equilibrium be recast to be a condition on the measurements, which we have, rather than on the state of
nature itself, which eludes accurate description?

Many researchers deal with DNA probe alleles by "binning" —  such as rounding measurements
off to the nearest 0.1kb, or classifying alleles according to the standards rungs between which they fall.
One disadvantage —  among several —  with any binning method this:  If there are bins, inevitably there
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Figure 9  Bins.  Hatching indicates regions prone to
misclassification, ±

�
 from the boundaries.  (pS194 Black

alleles)

Figure 10  Caucasian and Black pS194 allele
frequency distributions

must be boundaries.  Those alleles near boundaries are subject to misclassification, and if the bins are
large, the misclassification will be by a large amount, since a mis-binned allele is in effect categorized
with other alleles whose typical size is the middle of the (wrong) bin.

1.  Hardy-Weinberg test by binning

a.  Nonetheless, for lack of anything
better, in an attempt to test Hardy-Weinberg
equilibrium we decided to try binning the data
into allelic classes.  As Max Baur has pointed
out, the amount of misclassification is
minimized by placing the boundaries at where
allele measurements are sparse — that is, at
natural troughs in the allele distribution
spectrum as shown in Figure 9.  By choosing
such boundaries we were able to partition the
measurements into three to five more or less
natural allelic classes.  These give rise to six to
fifteen phenotypic classes, for each of which we
make a prediction, by assuming Hardy-
Weinberg equilibrium, and compare against the
population data.  At first the results seemed quite hopeful.  According to the � 2 statistic, none of the six
combinations of race and probe are in disequilibrium.

Hoping to go further, and in an effort to
establish the sensitivity of the method, we next
applied the same test to a mixed population of pS194
Caucasians and Blacks.  It is visually apparent
(Figure 10) that if each race separately is in
equilibrium, then the combination must have an
excess of homozygosity and cannot be in equilibrium.
Therefore it was a little disappointing to find that the
mixed population wasn't far from equilibrium by our
test.  A further experiment using judiciously chosen
bin boundaries turned something up, but such a post
hoc procedure tends to be less than convincing.

b.  More bins

Perhaps using more bins would make a more sensitive test.  Accordingly we raised the number
to ten (at the expense of using unnatural boundaries) and promptly demonstrated disequilibrium —  at
98% significance and more — for most of the mixed population combinations.  

Unfortunately, the Caucasians and Blacks taken separately seemed to be just as far out of whack.
On the face of it this is not astonishing, because the conclusions are really statements about collections
of measurements, not about collections of people.  However it does raise questions:

  (1)(a)  Are we stumbling over an artifact in the data?

     (b)  If so, how can we avoid it?

  (2)  Since the binned measurements are not in Hardy-Weinberg equilibrium, does this limit
our ability to infer PI's from binned measurements?

c.  Very many bins

Moving up to 45 equally populated bins, the � 2's loomed enormous.  Even the heretofore reliable
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pS194 Hispanic data manifested incontrovertible disequilibrium. 

A simple calculation shows why this is to be expected when the number of bins is large.  With
each bin containing 1/45 of the alleles, each of the 45 phenotypic combinations binned as homozygous
are predicted (by Hardy-Weinberg) to occur with frequency 1/452, for a total of 1/45 of the population
predicted to be homozygous according to this binning.  This happens to be seven times smaller than the
rate of homozygosity actually observed, so we have artifactual excess homozygosity.  In retrospect, it is
clear that even ten bins was guaranteed to be too many.

Another way to understand the difficulty, and to see how it already occurs to a degree
even with a small number of boundaries, is to realize that misclassification of alleles is biased in
favor of misclassifying alleles that participate in an apparently homozygous phenotype.  The
reason is that the standard error of measurement, � , is only about 0.6% � MW, whereas 

�
, the

minimum difference reliably distinguishable by coelectrophoresis, is at least 1% � MW.  Suppose
two alleles' actual physical size is such that they share one of the hatched strips of Figure 9 and
are within 

�
 of one another.  If they come from different people, then they may by chance be

measured as being in the same bin, or in different bins.  But if they come from one person, then
we are bound to classify them both into the same bin.

2.  Matching phenotypes

a.  With binning schemes failing on every front, we next devised an experiment that doesn't
depend on trying to force the DNA probe data into the traditional mold of allelic categories.

We have 635 Hispanic pS194 phenotypes, which are presumably representative of the whole pop-
ulation.  We imagine coelectrophoresing each of them against every other, and for each phenotype we
associate an "observed" score which is the number of phenotypes it would match.  Estimating these scores
depends on 

�
.

Now we take the 1270 alleles and match every pair of them, thus constructing a hypothetical pop-
ulation of 12702 phenotypes, which is in Hardy-Weinberg equilibrium since by construction every allele
assorts equally with every other allele.  For each of the 635 phenotypes, we associate a "Hardy-Weinberg
score" by calculating what fraction of the hypothetical phenotypes it would appear to match.  This too
depends on 

�
.

Finally, we do a � 2 check to see if the Hardy-Weinberg score predicts the observed score.  

In brief the predictions were not even believable.  

The first problems to come to light were pitfalls in the computations.  Guided by the clue that the
observed scores tended to be too high (e.g. an average of 26 matches observed, with 25 predicted), we
realized that our initial rule for evaluating a match between phenotypes —  both alleles within 

�
 —

exaggerates matches by overlooking several subtle points.  

�
Heterozygotes should never match homozygotes.

�
For the same reason, a heterozygote from the real population should only match a

hypothetical phenotype that has alleles at least 
�
 apart.

�
A homozygote from the real population should only match a hypothetical phenotype if

all three genes are within 
�
.

These changes lowered the "observed" a bit more than the "predicted", but the difference was still
too large.  More thought turned up the idea that our way of picking data creates an ascertainment bias.
In scoring "observed" matches, each phenotype is scored as matching itself; perhaps it shouldn't be.  A
similar modification can to be made in the method of computing the "prediction" score.

Making these further changes again depressed both scores, but successfully closed the gap
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between them.

Too much.  The � 2 test now reported that for pS194 Hispanics the fit between prediction and
observation was so good as to be suspicious.  For some other populations the fit was hopelessly bad.  In
no case was it moderate.  Further rethinking was in order.

Part of the computer output from the experiment was a list of the phenotypes whose scores made
the bulk of the contribution to � 2.  Examining this list turned up a clue — four of the five leading
contributors were so close to one another as to match substantially the same sets of phenotypes!  In effect,
we were counting the same data over and over.  If the fit were good, it would seem to be very very good;
if bad, horrid.  

But how to count it correctly?  In technical terms, the problem was that we interpreted � 2 as if
each "observed-predicted" pair represented a degree of freedom.  If we think of each phenotype as
representing a "sphere of influence" consisting of those phenotypes near enough to match it by
coelectrophoresis, since the spheres overlap severely each one really represents only a fraction of a degree
of freedom.

b.  Test phenotypes

Not being statistician enough to evaluate and compensate for the overlap, we formulated another
approach motivated simultaneously by trying to get rid of the overlap, and coming to terms with the
heretofore confusing issue of ascertainment bias.  

In the preceding experiment each of the 635 phenotypes plays two roles.

(i)  On the one hand, it is a test phenotype which is matched with two populations:

(a) the real population consisting of the remaining 634 phenotypes, and

(b) the hypothetical Hardy-Weinberg population of 12692 phenotypes.

(ii)  On the other hand, it is a data point in the set mentioned in (i.a).

Viewed in this light, the overlap problem occurs because the elements of set (i) are packed close
together, whereas the closeness in their alternate role, set (ii), is not a problem.  Set (ii) has to be our data,
but there is no reason why (i) has to be the same set; (i) can be purely artificial.

Accordingly, we modified the previous experiment by choosing a different set (i) of test
phenotypes according to these criteria:

(1)  To overcome the overlap problem, they should be far enough from one another that the
spheres of influence are disjoint.

(2)  To avoid considerations of ascertainment bias, they should not be selected from among the
real phenotypes.

(3)  To test the hypothesis of equilibrium as thoroughly as possible, the spheres of influence of
the test set should cover as much as possible of (i.a).

(1) Tiling with test phenotypes

A simple rectilinear approach was adopted.  Ten test alleles, spaced 2 �  apart, pretty much cover
the observed allele spectrum of pS194.  Considering every pair of these gives rise to 55 test phenotypes,
each of which corresponds to a degree of freedom.  

Expected and observed numbers of matches were calculated as described above.  Our statistical
consultant advised against including cells with an expectation less than 5, or perhaps less than 3, in a � 2

computation, so such cells were lumped into a "tail" category.

The results were a mixed bag —  believable for the most part, and tending to imply that
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                           �  (%� MW)                                  
Probe, race      1.4       1.75       2.2  
pS194

Caucasian ½ (13) 0.12 (14) 0.2 (13)
Black 0.11 (10) 0.3 (12) ½ (12)
Hispanic 0.3 (9) ½ (9) ½ (12)
Cauc/Black 0.018 (19) 0.3 (2) ½ (21)

pL336
Caucasian ½ (6) 0.4 (4) ½ (5)
Black 0.4 (2) 0.4 (5) 0.3 (7)
Hispanic 0.4 (15) ½ (16) 0.2 (11)
Cauc/Black ½ (12) ½ (15) ½ (9)

Table VIII  p values, � 2 test for Hardy-Weinberg equili brium.  (degrees of
freedom=number of test phenotypes, shown in parentheses)

�
 (%� MW) = 1.6 1.65 1.7 1.75 1.8 1.85 1.9

chi2 = 12.4 11.4 10.9 10.7 11.1 11.6 12.4
significant at p = .05 .08 .09 .1 .09 .07 .05

             (with 6 d.f.)
Table IX  Wahlund checks — various 

�
 — homozygotes vs. expected

equilibrium is more or less present for the pure populations and probably absent for the mixed ones, but
suspiciously sensitive to even small changes in � .

Evidently, choices for �  which resulted in splitting of apparently homogeneous peaks resulted
in factitious increases in � 2, just as with binning.  Our overall impression from these studies is that the
individual populations may well be in Hardy-Weinberg equilibrium, and the mixed populations may not
be, and it would help a lot to know what �  really is.  

(2) Natural test phenotypes

In order to minimize the boundary misclassifications, we modified the arrangement of the test
phenotypes.  Instead of choosing test alleles "butted together" (2 �  apart), we selected them to lie at the
largest allelic peaks — but still  at least 2 �  apart, of course.  This resulted in lots of large gaps and rather
fewer test phenotypes than before — usually 10 to 21 — but they still cover most of the dense regions.

The results are
shown in Table VIII. 

This test turned out
to be no better than
natural binning.  The
individual populations
were not significantly
different from Hardy-
Weinberg equilibrium
over a wide range of � 's.
O n l y  t h e
C a u c a s i a n / B l a c k
admixture for pS194
significantly deviated
from Hardy-Weinberg,
and only at a value of �
for which individual
populations deviated
from Hardy-Weinberg

equilibrium by Wahlund's test (Table IX).  Moreover, sample size for Caucasians and Hispanics in pL336
proved to be a limiting factor.

B.  The Wahlund Test

For a given value of �  (assumed to be the same for each combination probe and population) a
check for excess homozygosity taken across all six populations (3 races and 2 probes) gives the results of
Table IX.

The best fit is at �  = 1.75% � MW; significant deviation from Hardy-Weinberg equilibrium is not
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Locus

Proportion of
Homozygotes

D2S44  D17S79

Expected by Hardy-
Weinberg

4.7%  3.5%

Seen in Sample 17.1% 12.8%

ratio 3.64 3.66

Table X  Lander's calculations, and ratios

homozygotes heterozygotes TOTALS 

obs exp � 2 obs exp � 2 obs exp � 2

Cauc+
Black

pS194 126 105.1 4.1 639 659.9 0.7 765 765 4.8

� 2 = 4.8 with 1 degree of freedom is significant at p=0.03.

Table XI  Wahlund check —  mixture exhibits disequili brium although individual populations do not

present.  Other values of �  between 1.6% � MW and 1.9% � MW fit less well, and give an indication of the
robustness of the method.

In this respect it is well worth noting
that Lander's computation by this test (Table
IX), that Lifecodes' data were not in equilibrium
could just has well have been interpreted to
suggest that the wrong �  was being applied.

We don't have Lifecodes' data available
to make computations with various � 's, but on
the average the expected number of
homozygotes is proportional to � . The observed
number exceeds the expected by a factor of
3.65±0.01 in both cases.  Lander used �  =
0.4% � MW; a more appropriate �  for these probes
and experimental conditions appears to be
1.8% � MW [D. Endean, these Proceedings].

Our actual data for �  = 1.75% � MW are
shown as Table X.

A test of the power of this method is needed.  To this end, we note from Table X that for
Caucasian pS194, � 2=0.2 with 1df, which is not significant, and for Black pS194, � 2=2.4 with 1df, which
is not statistically significant (p=.12) either.  However, combining the Caucasian and Black pS194 data,
we found significance at p=0.03, as shown in Table X.

Thus significant deviation from equilibrium was obtained with this probe and mixture.  However

we could not consistently demonstrate significance with mixtures by this method.  For example, even
though Hispanic and Black pL336 populations are clearly different (Figure 11), the mixture showed no
greater statistical deviation than the Black population alone (data not shown).
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Figure 11  Black (thick line) and Hispanic
pL336 allele frequencies

Section VII.  Independence of Loci

Independence of loci is required to multiply PI's or
phenotype frequencies.  We have used a binning technique
to address the following question:

Is allele ai in pS194 associated with allele bk in pL336
(Is the frequency with which ai and bk are found in the same
phenotype equal to the product of ai occurrence and bj

occurrence)?  To this end, we made use of allele bins of
equal size.  This allowed us to make maximal use of the
data, as expectations for each cell were equal.  While "edge
effects" i.e. misclassification of alleles, remains an issue,
factitious increased homozygosity is not present as a

confounding factor.  Moreover, the method is independent of � .  However, our data is limited to those
individuals phenotyped in both systems (see Table I).  Using this method we were able to subdivide the
alleles into as many as 15 equal bins, yielding as many as 225 ai, bk, with the following results:

The above tests compared the number of observed phenotypes containing ai, bk with the expected
frequency of such phenotypes, multiplying the observed frequency of phenotypes containing ai with the
observed frequency of phenotypes containing bk.  (Test based on "phenotype count").  We also tested, for
the same arrays, observed frequency of phenotypes containing ai, bk against expectation based on allele
count.  This is a simultaneous test of both independence and (weakly) of Hardy-Weinberg equilibrium.
Significant association was not observed (data not shown).  Independence as defined in this manner
implies that cumulative exclusion probabilities may be obtained by multiplication.

The level of discrimination tested by 15x15 arrays corresponds to validating cumulative exclusion
probability at levels of 0.98 +, compared to cumulative mean exclusion probabilities for each race of about
0.95, calculated from individual calculated mean exclusion probabilities.  We were disappointed in not
observing significant deviation from independence with mixed populations.  However, we would expect
significant deviation from independence for a mixed population only if the allele frequency distributions
were significantly different at both loci, and this does not seem to be the case with pS194 and pL336.

A.  Independence of phenotypes

This question is of importance in blood stain work, and can be tested by the following question:  is
phenotype aiaj in pS194 associated with phenotype blbk in pL336?  If alleles are sorted by bins, three alleles
for each locus yields six phenotypes for each, and 6x6 cells (25df).  Five alleles yields fifteen phenotypes
for each, and 15x15 cells (196df).  No significant deviations from independence of phenotypes was
observed (data not shown) at these levels.  Further testing was limited by data base size and by problems
of misclassification of phenotypes and factitious homozygosity, as noted above for check of
Hardy-Weinberg equilibrium.

B.  Further validation strategies

Independence of haplotypes ai, bk can be tested independent of delta by the binning procedure
described above.  This test, which validates multiplication of PI, requires experimental haplotypes, which
are obtainable from disputed paternity case work.

Powerful tests of Hardy-Weinberg equilibrium require independent determination of � .  This can
be obtained by observation of �A, and fitting �P�Ir and/or P̂If to expected values.
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Section VIII.  Discussion

Our studies have led us to the following conclusions:

1. Independence of loci may be easily tested by binning from data bases for the presence of ai and
bk in the same phenotype.  Independence at this level implies that cumulative mean exclusion
probabilities may be computed in the time honored way.  Tests of independence of haplotypes
(implying that PI's may be multiplied) requires experimentally obtained haplotype frequencies,
but should be easy to perform.  Independence of phenotypes cannot be strongly tested directly,
because of binning artifacts.  However, independence of haplotypes strongly suggests
independence of phenotypes.

2. Powerful tests of Hardy-Weinberg equilibrium require independently determined values of � .
Even so, Hardy-Weinberg tests are fraught with artifactual pitfalls.  Thus, we would view with
skepticism claims that a population is or is not in Hardy-Weinberg Equilibrium.

3. For paternity testing, the experimentally determined mean exclusion probability ( �A) is a key
biostatistic, as it provides on one hand a method to evaluate the appropriateness of PI
calculations and, on the other, a method to determine � .  Once �  has been selected in this manner,
observed heterozygosity (h) provides a test of Hardy-Weinberg equilibrium (Wahlund's rule).

4. Observed heterozygosity provides a direct way to evaluate the appropriateness of phenotype
match calculations.  
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Appendix A — Solution of the Model for � �
The migration model assumes that migration distance, m, and molecular weight, L=L(m), are

related by

L(m) �  L0  =  c / (m �  m0).

Differentiating with respect to m:

dL/dm  =  � c / (m �  m0)2.

By a slight abuse of notation we consider dL and dm to be quantities.  Assuming that band thickness
determines the coelectrophoresis threshold,

for a given

band thickness = �  = -dm

there corresponds a relative percentage discrimination threshold�
  =  100 � dL/L

=  (100/cL)(L � L0)2 � .

Using the model

� (m)  =  � 0 + k � m � ,

we have �
� (L)  =  (100/cL)(L � L0)2( � 0+k � m � ).
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System
h

�A

(eqn V.A.1) (eqn V.A.2) (actual)

n allele codominant
system of equal
allele frequencies

n=4 .750 .563 .510 .504
n=5 .800 .640 .599 .595
n=6 .833 .694 .662 .660
n=7 .857 .734 .708 .707
n=8 .875 .766 .744 .743
n=9 .889 .790 .773 .772
n=10 .900 .810 .795 .795

single locus DNA
probe pS194 (Pst I)

.85 .723 .695 .686

For n allele codominant system of equal allele frequencies, �A (actual) were computed from an exact equation
[Garber RA and Morris JW, Inclusion Probabilities in Parentage Testing.  Ed R. Walker AABB, Arlington
VA 1983, table 22-1, p278]).  For pS194, heterozygosity and �A (actual) are values obtained by Dykes, et al
[Electrophoresis 9(1988)359-368] and Polesky, et al [DNA for Parentage Testing, Leesburg, VA, April 17-
18, 1989, AABB]

Table XII  Validation of Estimates for Mean Exclusion Probability ( �A) from heterozygosity (h)

Appendix B — Formula for � �A from h

In this Appendix, we derive equations (V.B.1) and (V.B.2) of page 9.

Suppose h, the observed rate of heterozygosity, has been determined from population data on
individuals.  From this a theoretical prediction can be made of the expected value for �A —  the mean
exclusion probability — for paternity casework.

We consider all possible mother-child pairs, and categorize them according to the matching band
patterns.  For each category, we calculate the frequency (as a fraction of all possible mother-child pairs),
and the �A for all such cases.

Note that h is the chance that two alleles selected at random will fail to match.

Case 1. — Single paternal allele.  This occurs either

a.  when the mother is homozygous, or frequency = 1 � h

b.  when the mother is heterozygous, and

the maternal and paternal alleles

are different frequency = h2

total frequency = 1 � h+h2

�A = h2 for this case —  a tested man is excluded if both of his alleles fail to match the unique
paternal allele.
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Case 2. — Apparently two paternal alleles.  This occurs 

when the mother is heterozygous and the paternal allele 

matches the non-contributed allele from the mother. frequency = h(1 � h)
�A �  h4 for this case —  to be excluded a tested man's two alleles must each mis-match twice.  (It

is only an approximation because if the man's alleles mis-match the child's first allele, the chance of
missing the second one is diminished.)

The expected value for �A is therefore
�A  �   h2 � [1 � h+h2] + h4 � h(1 � h)

=  h2 � [1 �  h � (1 � h � h2+h3)]

=  h2 � [1 �  h � (1 � h)(1 � h)(1+h)].

Writing H=homozygosity for 1 � h, and using 1+h � 2, this becomes
�A  �   h2 � [1 �  2hH2]. (V.B.2)

For a rougher approximation, use the fact that H2 � 0, whence
�A  �   h2. (V.B.1)
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h=.95  � =.0249
  .90    .0495
  .85    .0733
  .80    .0960

Table XIII  �  values

Appendix C — Correction Factor to PI0

When we sum over PI, or over W, calculating

PI0  =  1 / 2 � Pr{random match}

for each data point, we are ignoring cases in which AF is
homozygous and cases with two paternal alleles.

What effect does this have?

For fathers

1.  single paternal allele frequency = h

a.  single match 

(1)  AF heterozygous frequency = h

PI  =  1 / 2Pr{random match}

=  PI0.

b.  double match

(1)  AF homozygous frequency = 1 � h

PI  =  2 � PI0.

2.  two paternal alleles frequency = 1 � h

a.  single match frequency = h2

PI  =  ½ � PI0.

b.  double match

(1)  AF homozygous frequency = 1 � h

PI  =  PI0.

(2)  AF heterozygous frequency = h

(a)  2 matches frequency = 2(1 � h)

PI  =  PI0.

Combining the above, we get

corrected PI  =  PI0 [ Pr{PI=PI0} + 2 � Pr{PI=2PI0} + ½ � Pr{PI=½PI0} ]

=  PI0 [ 1 � h(1 � h) � h2(1 � h) + 2 � h(1 � h) + ½ � h2/(1 � h) ]

=  PI0 [ 1 + h(1 � h) �  ½h2(1 � h) ]

=  PI0 [ 1 + ½h(1 � h)(2 � h) ]

=  PI0 (1 + � ).
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Appendix D — An Approximate Formula for � �R

Estimation of mean probability of phenotype match ( �R) from heterozygosity (h)

Case I — match to heterozygote frequency = h

matching frequency �  2(1-h)2

Case II — match to homozygote frequency = 1 � h

matching frequency = (1 � h)2

Hence �R  �   h �  2(1 � h)2 + (1 � h) �  (1 � h)2

�   (1 � h)2(1+h).

Since 1+h � 2 and 1 � h=H,
�R  �   2H2.

Appendix E — Materials and Methods

Genomic DNA was extracted by salting out according to the method of Dykes, and restricted
with Pst I. 5 � g quantities were separated on 0.7% agarose gels in Tris/Borate/EDTA, pH8.2. 30 slot gels
(20x24 cm) were run (constant voltage) at 35v (20 milliamps) for 62-65 h, until the 2.3 kb visible marker
(lambda phage restricted with Hind III) had run 19-21 cm.  DNA was blotted into nylon membranes
(Oncor) and hybridized at 42C to biotinylated (Oncor) probes pS194 and pL336 (Collaborative Research).
Stringency conditions were 52-60C (pS194) and 60-62C (pL336), 0.16% SSC, 30 min.  Hybridization and
detection of bands was performed with Oncor reagents according to protocols supplied by the
manufacturer.  Band sizes were determined by digitizing pad, making use of MW ladders made up from
lambda phage restricted with BstE II, Hind III, Sph I, and augmented for detection of alleles greater than
12kb with lambda phage restricted with Xho I and Nco I.  A genomic control was run on every gel.  Each
band was digitized twice.  Averaged values were used for analysis.  Data analysis and statistical studies
were performed with DNA � VIEW, an integrated software package.  PI's were computed by the double
integral equation as modified by Brenner [Morris, JW et al. J. Forensic Sci 34 (1989) 1311-1317], [Equation
II.4 herein].


